Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.848
1.
Arch Microbiol ; 206(6): 257, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734773

There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.


Antifungal Agents , Candida , Protease Inhibitors , Antifungal Agents/pharmacology , Candida/drug effects , Candida/growth & development , Protease Inhibitors/pharmacology , Microbial Sensitivity Tests , Animals , Capsicum/microbiology , Reactive Oxygen Species/metabolism , Seeds/growth & development , Plant Extracts/pharmacology , Plant Extracts/chemistry , Erythrocytes/drug effects , Larva/microbiology , Larva/growth & development , Larva/drug effects
2.
Front Cell Infect Microbiol ; 14: 1391758, 2024.
Article En | MEDLINE | ID: mdl-38716194

Campylobacter jejuni, a Gram-negative bacterium, is one of the most common causes of foodborne illness worldwide. Its adhesion mechanism is mediated by several bacterial factors, including flagellum, protein adhesins, lipooligosaccharides, proteases, and host factors, such as surface glycans on epithelial cells and mucins. Fungal lectins, specialized carbohydrate-binding proteins, can bind to specific glycans on host and bacterial cells and thus influence pathogenesis. In this study, we investigated the effects of fungal lectins and protease inhibitors on the adhesion of C. jejuni to model biotic surfaces (mucin, fibronectin, and collagen) and Caco-2 cells as well as the invasion of Caco-2 cells. The lectins Marasmius oreades agglutinin (MOA) and Laccaria bicolor tectonin 2 (Tec2) showed remarkable efficacy in all experiments. In addition, different pre-incubations of lectins with C. jejuni or Caco-2 cells significantly inhibited the ability of C. jejuni to adhere to and invade Caco-2 cells, but to varying degrees. Pre-incubation of Caco-2 cells with selected lectins reduced the number of invasive C. jejuni cells the most, while simultaneous incubation showed the greatest reduction in adherent C. jejuni cells. These results suggest that fungal lectins are a promising tool for the prevention and treatment of C. jejuni infections. Furthermore, this study highlights the potential of fungi as a rich reservoir for novel anti-adhesive agents.


Bacterial Adhesion , Campylobacter jejuni , Lectins , Protease Inhibitors , Campylobacter jejuni/drug effects , Campylobacter jejuni/physiology , Campylobacter jejuni/metabolism , Humans , Caco-2 Cells , Bacterial Adhesion/drug effects , Lectins/metabolism , Lectins/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/metabolism , Fungi/drug effects , Mucins/metabolism , Epithelial Cells/microbiology , Fibronectins/metabolism
3.
Sci Rep ; 14(1): 10419, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710746

The present work elicits a novel approach to combating COVID-19 by synthesizing a series of azo-anchored 3,4-dihydroimidazo[4,5-b]indole derivatives. The envisaged methodology involves the L-proline-catalyzed condensation of para-amino-functionalized azo benzene, indoline-2,3-dione, and ammonium acetate precursors with pertinent aryl aldehyde derivatives under ultrasonic conditions. The structures of synthesized compounds were corroborated through FT-IR, 1H NMR, 13C NMR, and mass analysis data. Molecular docking studies assessed the inhibitory potential of these compounds against the main protease (Mpro) of SARS-CoV-2. Remarkably, in silico investigations revealed significant inhibitory action surpassing standard drugs such as Remdesivir, Paxlovid, Molnupiravir, Chloroquine, Hydroxychloroquine (HCQ), and (N3), an irreversible Michael acceptor inhibitor. Furthermore, the highly active compound was also screened for cytotoxicity activity against HEK-293 cells and exhibited minimal toxicity across a range of concentrations, affirming its favorable safety profile and potential suitability. The pharmacokinetic properties (ADME) of the synthesized compounds have also been deliberated. This study paves the way for in vitro and in vivo testing of these scaffolds in the ongoing battle against SARS-CoV-2.


Antiviral Agents , COVID-19 Drug Treatment , Coronavirus 3C Proteases , Indoles , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , HEK293 Cells , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Computer Simulation , COVID-19/virology , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis
4.
Cryo Letters ; 45(3): 149-157, 2024.
Article En | MEDLINE | ID: mdl-38709186

BACKGROUND: The industrial scale cryo-storage of raw tissue materials requires a robust, low-cost and easy-to-operate method that can facilitate the down-stream process. OBJECTIVE: The study was aimed to develop the multifunctional protective solutions (MPS) for transportation at ambient conditions and also subsequent cryo-storage below -20 degree C of raw porcine hides for tissue engineering and regenerative medicine. MATERIALS AND METHODS: Protective solutions with antimicrobial activity and proteinase-inhibiting activity were developed and tested for its efficacy in preserving the extracellular matrix of porcine dermis from microbial spoilage, proteolytic degradation, freeze damage and excessive dehydration during shipping and cryo-storage. The MPSs contained phosphate-buffered saline with ethylene diamine tetra acetic acid (EDTA) added as chelator and proteinase inhibitor, as well as glycerol or maltodextrin (M180) as cryoprotectants. RESULTS: MPSs prepared with EDTA and glycerol or M180 had significant antimicrobial activity and proteinase-inhibiting activity during the period of shipping and handling. Glycerol and M180 prevented eutectic salt precipitation and excessive freeze dehydration upon cryo-storage of porcine hides. Without glycerol or M180, hides could be freeze-dehydrated to the low hydration at ~0.4 g/g dw, and formed irreversible plications after freezing. A critical hydration (0.8~0.9 g/g dw) was observed for the extracellular matrix of porcine dermis, and dehydration to a lower level could impose enormous stress and potential damage. The soaking of porcine hides in MPSs decreased water content as glycerol and M180 entered into dermis. Upon equilibration, the glycerol content in the tissue was about 94% of the incubating glycerol solution, but the M180 content in the tissue was only about 50% of the incubating M180 solution, indicating that M180 did not get into the entire aqueous domain within dermis. MPSs reduced ice formation and increased the unfrozen water content of porcine raw hides upon cryo-storage. CONCLUSION: MPSs prepared with EDTA and glycerol or M180 have antimicrobial activity and proteinase-inhibiting activity, which can be used for transportation and cryo-storage of raw hides at the industrial scale. Glycerol at 7.5% w/v and M180 at 20% w/v were sufficient to prevent freeze damage and excessive freeze dehydration. Doi.org/10.54680/fr24310110312.


Cryopreservation , Cryoprotective Agents , Regenerative Medicine , Tissue Engineering , Animals , Regenerative Medicine/methods , Swine , Tissue Engineering/methods , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Cryoprotective Agents/chemistry , Edetic Acid/chemistry , Edetic Acid/pharmacology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects
5.
Int J Biol Macromol ; 267(Pt 1): 131392, 2024 May.
Article En | MEDLINE | ID: mdl-38582483

The main protease (Mpro) of SARS-CoV-2 is critical in the virus's replication cycle, facilitating the maturation of polyproteins into functional units. Due to its conservation across taxa, Mpro is a promising target for broad-spectrum antiviral drugs. Targeting Mpro with small molecule inhibitors, such as nirmatrelvir combined with ritonavir (Paxlovid™), which the FDA has approved for post-exposure treatment and prophylaxis, can effectively interrupt the replication process of the virus. A key aspect of Mpro's function is its ability to form a functional dimer. However, the mechanics of dimerization and its influence on proteolytic activity remain less understood. In this study, we utilized biochemical, structural, and molecular modelling approaches to explore Mpro dimerization. We evaluated critical residues, specifically Arg4 and Arg298, that are essential for dimerization. Our results show that changes in the oligomerization state of Mpro directly affect its enzymatic activity and dimerization propensity. We discovered a synergistic relationship influencing dimer formation, involving both intra- and intermolecular interactions. These findings highlight the potential for developing allosteric inhibitors targeting Mpro, offering promising new directions for therapeutic strategies.


Antiviral Agents , Coronavirus 3C Proteases , Protein Multimerization , SARS-CoV-2 , SARS-CoV-2/drug effects , Protein Multimerization/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Models, Molecular , COVID-19/virology , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry
6.
Sci Rep ; 14(1): 8991, 2024 04 18.
Article En | MEDLINE | ID: mdl-38637583

COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.


COVID-19 , Coronavirus 3C Proteases , Peptidomimetics , Humans , SARS-CoV-2/metabolism , Peptidomimetics/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Amino Acids , Molecular Dynamics Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
7.
Arch Biochem Biophys ; 756: 110019, 2024 Jun.
Article En | MEDLINE | ID: mdl-38688397

Neutral endopeptidase or neprilysin (NEP) cleaves the natriuretic peptides, bradykinin, endothelin, angiotensin II, amyloid ß protein, substance P, etc., thus modulating their effects on heart, kidney, and other organs. NEP has a proven role in hypertension, heart disease, renal disease, Alzheimer's, diabetes, and some cancers. NEP inhibitor development has been in focus since the US FDA approved a combination therapy of angiotensin II type 1 receptor inhibitor (valsartan) and NEP inhibitor (sacubitril) for use in heart failure. Considering the importance of NEP inhibitors the present work focuses on the designing of a potential lead for NEP inhibition. A structure-based pharmacophore modelling approach was employed to identify NEP inhibitors from the pool of 1140 chemical entities obtained from the ZINC database. Based on the docking score and pivotal interactions, ten molecules were selected and subjected to binding free energy calculations and ADMET predictions. The top two compounds were studied further by molecular dynamics simulations to determine the stability of the ligand-receptor complex. ZINC0000004684268, a phenylalanine derivative, showed affinity and complex stability comparable to sacubitril. However, in silico studies indicated that it may have poor pharmacokinetic parameters. Therefore, the molecule was optimized using bioisosteric replacements, keeping the phenylalanine moiety intact, to obtain five potential lead molecules with an acceptable pharmacokinetic profile. The works thus open up the scope to further corroborate the present in silico findings with the biological analysis.


Drug Design , Molecular Docking Simulation , Molecular Dynamics Simulation , Neprilysin , Neprilysin/antagonists & inhibitors , Neprilysin/chemistry , Neprilysin/metabolism , Humans , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Pharmacophore
8.
J Med Chem ; 67(9): 7048-7067, 2024 May 09.
Article En | MEDLINE | ID: mdl-38630165

Emerging RNA viruses, including SARS-CoV-2, continue to be a major threat. Cell entry of SARS-CoV-2 particles via the endosomal pathway involves cysteine cathepsins. Due to ubiquitous expression, cathepsin L (CatL) is considered a promising drug target in the context of different viral and lysosome-related diseases. We characterized the anti-SARS-CoV-2 activity of a set of carbonyl- and succinyl epoxide-based inhibitors, which were previously identified as inhibitors of cathepsins or related cysteine proteases. Calpain inhibitor XII, MG-101, and CatL inhibitor IV possess antiviral activity in the very low nanomolar EC50 range in Vero E6 cells and inhibit CatL in the picomolar Ki range. We show a relevant off-target effect of CatL inhibition by the coronavirus main protease α-ketoamide inhibitor 13b. Crystal structures of CatL in complex with 14 compounds at resolutions better than 2 Å present a solid basis for structure-guided understanding and optimization of CatL inhibitors toward protease drug development.


Antiviral Agents , Cathepsin L , SARS-CoV-2 , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Animals , Chlorocebus aethiops , Vero Cells , SARS-CoV-2/drug effects , Humans , Structure-Activity Relationship , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Crystallography, X-Ray , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Models, Molecular
9.
PLoS One ; 19(4): e0292294, 2024.
Article En | MEDLINE | ID: mdl-38635555

INTRODUCTION: Sexual dysfunction in women with HIV is a necessary but understudied aspect of HIV complications in women living with HIV. This study reports the prevalence, pattern, and risk factors for sexual dysfunction in women living with HIV in southwest Nigeria. METHODS: A validated Female Sexual Function Index was used to determine sexual dysfunction in a cross-sectional study design involving 2926 adult women living with HIV in a large, publicly funded tertiary HIV treatment centre in Lagos, Nigeria. A score of less than 26.5 indicated sexual dysfunction. Multivariate logistic regression analysis was performed to identify risk factors for sexual dysfunction. P<0.05 was considered statistically significant at a 95% confidence interval (CI). RESULTS: The prevalence of sexual dysfunction was 71.4%. The types of dysfunctions detected included disorder of desire (76.8%), sexual arousal (66.0%), orgasm (50.0%), pain (47.2%), lubrication (47.2%), and satisfaction (38.8%). Multivariate analysis showed that menopause (aOR: 2.0; 1.4-4.1), PHQ score of 10 and above (aOR: 2.3; 1.7-3.2), co-morbid medical conditions (aOR: 1.8; 1.4-2.7), use of protease inhibitor-based antiretroviral therapy (aOR: 1.3; 1.2-2.1) and non-disclosure of HIV status (aOR: 0.7; 0.6-0.8) were factors associated with sexual dysfunction. CONCLUSIONS: Sexual dysfunction is common among Nigerian women living with HIV. Menopause, use of protease inhibitor-based regimens, PHQ score of at least 10, co-morbid medical condition, and non-disclosure of HIV status were associated with sexual dysfunction. National HIV programmes, in addition to incorporating screening and management of sexual dysfunction in the guidelines, should sensitise and train health workers on the detection and treatment of sexual dysfunction.


HIV Infections , Sexual Dysfunction, Physiological , Sexual Dysfunctions, Psychological , Adult , Humans , Female , HIV Infections/complications , HIV Infections/epidemiology , Sexual Dysfunctions, Psychological/epidemiology , Sexual Dysfunctions, Psychological/etiology , Cross-Sectional Studies , Surveys and Questionnaires , Nigeria/epidemiology , Sexual Dysfunction, Physiological/etiology , Sexual Dysfunction, Physiological/complications , Protease Inhibitors
10.
Drug Des Devel Ther ; 18: 1133-1141, 2024.
Article En | MEDLINE | ID: mdl-38618281

Type 2 diabetes mellitus (T2DM) is one of the world's principal metabolic diseases characterized by chronic hyperglycemia. The gut incretin hormones, glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP), which has been proposed as a new treatment for T2DM, are extensively metabolized by Dipeptidyl peptidase 4 (DPP-4). Inhibitors of DPP-4 block the degradation of GLP-1 and GIP and may increase their natural circulating levels, favoring glycemic control in T2DM. A novel and potent selective inhibitor of DPP-4 with an 8-purine derived structure (1) has been developed and tested in vitro and in vivo in Zücker obese diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome and T2DM to assess the inhibitory activity using vildagliptin as reference standard. ZDF rats were subdivided into three groups (n = 7/group), control (C-ZDF), and those treated with compound 1 (Compound1-ZDF) and with vildagliptin (V-ZDF), both at 10 mg/kg/d rat body weight, in their drinking water for 12 weeks, and a group of lean littermates (ZL) was used. ZDF rats developed DM (fasting hyperglycemia, 425 ± 14.8 mg/dL; chronic hyperglycemia, HbA1c 8.5 ± 0.4%), compared to ZL rats. Compound 1 and vildagliptin reduced sustained HbAl1c (14% and 10.6%, P < 0.05, respectively) and fasting hyperglycemia values (24% and 19%, P < 0.05, respectively) compared to C-ZDF group (P < 0.001). Compound 1 and vildagliptin have shown a potent activity with an IC50 value of 4.92 and 3.21 µM, respectively. These data demonstrate that oral compound 1 administration improves diabetes in ZDF rats by the inhibitory effect on DPP-4, and the potential to be a novel, efficient and tolerable approach for treating diabetes of obesity-related T2DM, in ZDF rats.


Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Hyperglycemia , Animals , Rats , Antiviral Agents , Bronchodilator Agents , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide 1 , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Obesity/drug therapy , Protease Inhibitors , Rats, Zucker , Vasodilator Agents , Vildagliptin/pharmacology , Vildagliptin/therapeutic use
11.
PLoS One ; 19(4): e0298201, 2024.
Article En | MEDLINE | ID: mdl-38626042

Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.


Alkaloids , COVID-19 , Humans , SARS-CoV-2/metabolism , Quercetin/pharmacology , Molecular Docking Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Molecular Dynamics Simulation , Alkaloids/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
12.
Virus Res ; 344: 199368, 2024 Jun.
Article En | MEDLINE | ID: mdl-38588924

Several viruses are now known to code for deubiquitinating proteases in their genomes. Ubiquitination is an essential post-translational modification of cellular substrates involved in many processes in the cell, including in innate immune signalling. This post-translational modification is regulated by the ubiquitin conjugation machinery, as well as various host deubiquitinating enzymes. The conjugation of ubiquitin chains to several innate immune related factors is often needed to induce downstream signalling, shaping the antiviral response. Viral deubiquitinating proteins, besides often having a primary function in the viral replication cycle by cleaving the viral polyprotein, are also able to cleave ubiquitin chains from such host substrates, in that way exerting a function in innate immune evasion. The presence of viral deubiquitinating enzymes has been firmly established for numerous animal-infecting viruses, such as some well-researched and clinically important nidoviruses, and their presence has now been confirmed in several plant viruses as well. Viral proteases in general have long been highlighted as promising drug targets, with a current focus on small molecule inhibitors. In this review, we will discuss the range of viral deubiquitinating proteases known to date, summarise the various avenues explored to inhibit such proteases and discuss novel strategies and models intended to inhibit and study these specific viral enzymes.


Deubiquitinating Enzymes , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/antagonists & inhibitors , Deubiquitinating Enzymes/genetics , Humans , Viral Proteases/metabolism , Protein Processing, Post-Translational , Ubiquitination , Animals , Virus Replication , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , Viruses/drug effects , Viruses/enzymology , Viral Proteins/metabolism , Viral Proteins/genetics , Ubiquitin/metabolism , Immunity, Innate
13.
Article En | MEDLINE | ID: mdl-38608142

Protease is the enzyme accountable for the breakdown of proteins i.e., proteolysis. Proteases are reportedly involved in the events of growth, development, progression and metastasis of cancers. If any agent could inhibit/retard the protease enzyme, i.e., protease inhibitor, it would arrest the cancer; thus indicating the significance of exploring protease inhibitors for latest anti-malignant drug discovery. Higher plants are the rich sources of different protease inhibitors that are effective against several types of malignancies both at preclinical and clinical stages. Natural protease inhibitors of herbal origin have both cancer chemopreventive and chemotherapeutic properties together with inhibitory activity against different types of pertinent proteases. Clinically, these herbal agents are found to be safe unlike the synthetic antineoplastic agents. Further studies in this direction are necessary in pursuit of newer generation drugs without adverse reactions for the prevention and treatment of malignancies.


Neoplasms , Protease Inhibitors , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/prevention & control , Peptide Hydrolases , Antiviral Agents
14.
Molecules ; 29(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38611800

4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.


Alcohols , Chlamydia trachomatis , Protease Inhibitors , Protease Inhibitors/pharmacology , Enzyme Therapy , Isocoumarins , Serine Endopeptidases , Serine Proteases
15.
Phys Chem Chem Phys ; 26(18): 14006-14017, 2024 May 08.
Article En | MEDLINE | ID: mdl-38683190

SARS-CoV-2 and its variants are crossing the immunity barrier induced through vaccination. Recent Omicron sub-variants are highly transmissible and have a low mortality rate. Despite the low severity of Omicron variants, these new variants are known to cause acute post-infectious syndromes. Nowadays, novel strategies to develop new potential inhibitors for SARS-CoV-2 and other Omicron variants have gained prominence. For viral replication and survival the main protease of SARS-CoV-2 plays a vital role. Peptide-like inhibitors that mimic the substrate peptide have already proved to be effective in inhibiting the Mpro of SARS-CoV-2 variants. Our systematic canonical amino acid point mutation analysis on the native peptide has revealed various ways to improve the native peptide of the main protease. Multi mutation analysis has led us to identify and design potent peptide-analog inhibitors that act against the Mpro of the Omicron sub-variants. Our in-depth analysis of all-atom molecular dynamics studies has paved the way to characterize the atomistic behavior of Mpro in Omicron variants. Our goal is to develop potent peptide-analogs that could be therapeutically effective against Omicron and its sub-variants.


Coronavirus 3C Proteases , Molecular Dynamics Simulation , Peptides , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Humans , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Design , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , COVID-19/virology
16.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38673962

In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level.


Antiviral Agents , Dengue , Protease Inhibitors , Zika Virus Infection , Animals , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , DEAD-box RNA Helicases , Dengue/drug therapy , Dengue/virology , Dengue Virus/drug effects , Nucleoside-Triphosphatase , Protease Inhibitors/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Proteases , Zika Virus/drug effects , Zika Virus/enzymology , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
17.
Chem Biodivers ; 21(5): e202302089, 2024 May.
Article En | MEDLINE | ID: mdl-38526531

The SARS-CoV-2 main protease, as a key target for antiviral therapeutics, is instrumental in maintaining virus stability, facilitating translation, and enabling the virus to evade innate immunity. Our research focused on designing non-covalent inhibitors to counteract the action of this protease. Utilizing a 3D-QSAR model and contour map, we successfully engineered eight novel non-covalent inhibitors. Further evaluation and comparison of these novel compounds through methodologies including molecular docking, ADMET analysis, frontier molecular orbital studies, molecular dynamics simulations, and binding free energy revealed that the inhibitors N02 and N03 demonstrated superior research performance (N02 ΔGbind=-206.648 kJ/mol, N03 ΔGbind=-185.602 kJ/mol). These findings offer insightful guidance for the further refinement of molecular structures and the development of more efficacious inhibitors. Consequently, future investigations can draw upon these findings to unearth more potent inhibitors, thereby amplifying their impact in the treatment and prevention of associated diseases.


Antiviral Agents , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , Quantitative Structure-Activity Relationship , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Humans , COVID-19 Drug Treatment , Thermodynamics , Molecular Structure
18.
Expert Opin Ther Pat ; 34(1-2): 17-49, 2024.
Article En | MEDLINE | ID: mdl-38445468

INTRODUCTION: Cysteine proteases are involved in a broad range of biological functions, ranging from extracellular matrix turnover to immunity. Playing an important role in the onset and progression of several diseases, including cancer, immune-related and neurodegenerative disease, viral and parasitic infections, cysteine proteases represent an attractive drug target for the development of therapeutic tools. AREAS COVERED: Recent scientific and patent literature focusing on the design and study of cysteine protease inhibitors with potential therapeutic application has been reviewed. EXPERT OPINION: The discovery of a number of effective structurally diverse cysteine protease inhibitors opened up new challenges and opportunities for the development of therapeutic tools. Mechanistic studies and the availability of X-ray crystal structures of some proteases, alone and in complex with inhibitors, provide crucial information for the rational design and development of efficient and selective cysteine protease inhibitors as preclinical candidates for the treatment of different diseases.


Cysteine Proteases , Neurodegenerative Diseases , Humans , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Patents as Topic , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology
19.
Chem Biodivers ; 21(4): e202301786, 2024 Apr.
Article En | MEDLINE | ID: mdl-38466126

SARS-CoV-2 caused pandemic represented a major risk for the worldwide human health, animal health and economy, forcing extraordinary efforts to discover drugs for its prevention and cure. Considering the extensive interest in the pregnane glycosides because of their diverse structures and excellent biological activities, we investigated them as antiviral agents against SARS-COV-2. We selected 21 pregnane glycosides previously isolated from the genus Caralluma from Asclepiadaceae family to be tested through virtual screening molecular docking simulations for their potential inhibition of SARS-CoV-2 Mpro. Almost all target compounds showed a more or equally negative docking energy score relative to the co-crystallized inhibitor X77 (S=-12.53 kcal/mol) with docking score range of (-12.55 to -19.76 kcal/mol) and so with a potent predicted binding affinity to the target enzyme. The activity of the most promising candidates was validated by in vitro testing. Arabincoside C showed the highest activity (IC50=35.42 µg/ml) and the highest selectivity index (SI=9.9) followed by Russelioside B (IC50=50.80 µg/ml), and Arabincoside B (IC50=53.31 µg/ml).


Apocynaceae , COVID-19 , Coronavirus 3C Proteases , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Apocynaceae/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Glycosides/pharmacology , Glycosides/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Pregnanes/pharmacology , Pregnanes/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism
20.
Hematology ; 29(1): 2331389, 2024 Dec.
Article En | MEDLINE | ID: mdl-38511642

OBJECTIVE: Plant homeodomain finger protein 19 (PHF19) regulates hematopoietic stem cell differentiation and promotes multiple myeloma (MM) progression. This study intended to explore the potency of PHF19 at baseline and post induction treatment in estimating treatment response to protease inhibitors and survival in MM patients. METHODS: This retrospective study screened 69 MM patients who received protease inhibitors with bone marrow (BM) samples available at both baseline and post induction treatment. Twenty healthy BM donors were included as healthy controls (HCs). PHF19 in plasma cells from BM was quantified by reverse transcription-quantitative polymerase chain reaction. RESULTS: PHF19 at baseline and post induction treatment in MM patients were increased than in HCs. In MM patients, PHF19 was declined post induction treatment. Elevated PHF19 at baseline and post induction treatment were correlated with renal impairment, beta-2-microglobulin ≥5.5 mg/L, t (4; 14), higher international staging system (ISS) stage, and higher revised ISS (R-ISS) stage. Concerning treatment response, PHF19 at baseline and post induction treatment were negatively associated with complete response and overall response rate. Notably, abnormal PHF19 (above 95% quantile value of PHF19 in HCs) at baseline and post induction treatment were linked with shortened event-free survival (EFS) and overall survival (OS). After adjustment, abnormal PHF19 post induction treatment was independently related to shortened EFS (hazard ratio = 2.474) and OS (hazard ratio = 3.124). CONCLUSION: PHF19 is aberrantly high and declines post induction therapy, which simultaneously reflects unfavorable treatment response to protease inhibitors as well as shorter EFS and OS in MM patients.


Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Humans , Progression-Free Survival , Retrospective Studies , Protease Inhibitors , Prognosis , DNA-Binding Proteins , Transcription Factors
...